33 resultados para Hypertrophic cardiomyopathy

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in a number of cardiac sarcomeric protein genes cause hypertrophic cardiomyopathy (HCM). Previous findings indicate that HCM-causing mutations associated with a truncated cardiac troponin T (TnT) and missense mutations in the -myosin heavy chain share abnormalities in common, acting as dominant negative alleles that impair contractile performance. In contrast, Lin et al. [Lin, D., Bobkova, A., Homsher, E. & Tobacman, L. S. (1996) J. Clin. Invest. 97, 28422848] characterized a TnT point mutation (Ile79Asn) and concluded that it might lead to hypercontractility and, thus, potentially a different mechanism for HCM pathogenesis. In this study, three HCM-causing cardiac TnT mutations (Ile79Asn, Arg92Gln, and Glu160) were studied in a myotube expression system. Functional studies of wild-type and mutant transfected myotubes revealed that all three mutants decreased the calcium sensitivity of force production and that the two missense mutations (Ile79Asn and Arg92Gln) increased the unloaded shortening velocity nearly 2-fold. The data demonstrate that TnT can alter the rate of myosin cross-bridge detachment, and thus the troponin complex plays a greater role in modulating muscle contractile performance than was recognized previously. Furthermore, these data suggest that these TnT mutations may cause disease via an increased energetic load on the heart. This would represent a second paradigm for HCM pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 10-30% of hypertrophic cardiomyopathy kindreds, the disease is caused by > 29 missense mutations in the cardiac beta-myosin heavy chain (MYH7) gene. The amino acid sequence similarity between chicken skeletal muscle and human beta-cardiac myosin and the three-dimensional structure of the chicken skeletal muscle myosin head have provided the opportunity to examine the structural consequences of these naturally occurring mutations in human beta-cardiac myosin. This study demonstrates that the mutations are related to distinct structural and functional domains. Twenty-four are clustered around four specific locations in the myosin head that are (i) associated with the actin binding interface, (ii) around the nucleotide binding site, (iii) adjacent to the region that connects the two reactive cysteine residues, and (iv) in close proximity to the interface of the heavy chain with the essential light chain. The remaining five mutations are in the myosin rod. The locations of these mutations provide insight into the way they impair the functioning of this molecular motor and also into the mechanism of energy transduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A suppressor mutation, D53, of the held-up2 allele of the Drosophila melanogaster Troponin I (wupA) gene is described. D53, a missense mutation, S185F, of the tropomyosin-2, Tm2, gene fully suppresses all the phenotypic effects of held-up2, including the destructive hypercontraction of the indirect flight muscles (IFMs), a lack of jumping, the progressive myopathy of the walking muscles, and reductions in larval crawling and feeding behavior. The suppressor restores normal function of the IFMs, but flight ability decreases with age and correlates with an unusual, progressive structural collapse of the myofibrillar lattice starting at the center. The S185F substitution in Tm2 is close to a troponin T binding site on tropomyosin. Models to explain suppression by D53, derived from current knowledge of the vertebrate troponin-tropomyosin complex structure and functions, are discussed. The effects of S185F are compared with those of two mutations in residues 175 and 180 of human -tropomyosin 1 which cause familial hypertrophic cardiomyopathy (HCM).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The signal transducer and activator of transcription (STAT) 3, a transcriptional factor downstream of several cytokines, is activated by Janus kinase families and plays a pivotal role in cardiac hypertrophy through gp130. To determine the physiological significance of STAT3 in vivo, transgenic mice with cardiac-specific overexpression of the Stat3 gene (STAT3-TG) were generated. STAT3-TG manifested myocardial hypertrophy at 12 wk of age with increased expression of the atrial natriuretic factor (ANF), -myosin heavy chain (MHC), and cardiotrophin (CT)-1 genes. The animals were injected i.p. with 15 mg/kg doxorubicin (Dox), an antineoplastic drug with restricted use because of its cardiotoxicity. The survival rates after 10 days were 25% (5/20) for control littermates (WT), but 80% (16/20) for STAT3-TG (P < 0.01). WT showed increased expression of -MHC and ANF mRNAs in the hearts 1 day after Dox treatment; this expression peaked at 3 days, suggesting that the WT suffered from congestive heart failure. Although the expression of these mRNAs was elevated in STAT3-TG hearts before Dox treatment, no additional increase was observed after the treatment. Dox administration significantly reduced the expression of the cardiac -actin and Stat3 genes in WT hearts but not in STAT3-TG. These results provide direct evidence that STAT3 transduces not only a hypertrophic signal but also a protective signal against Dox-induced cardiomyopathy by inhibiting reduction of cardiac contractile genes and inducing cardiac protective factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac hypertrophy and dilatation can result from stimulation of signal transduction pathways mediated by heterotrimeric G proteins, especially Gq, whose subunit activates phospholipase C (PLC). We now report that transient, modest expression of a hemagglutinin (HA) epitope-tagged, constitutively active mutant of the Gq subunit (HA*q) in hearts of transgenic mice is sufficient to induce cardiac hypertrophy and dilatation that continue to progress after the initiating stimulus becomes undetectable. At 2 weeks, HA*q protein is expressed at less than 50% of endogenous q/11, and the transgenic hearts are essentially normal morphologically. Although HA*q protein declines at 4 weeks and is undetectable by 10 weeks, the animals develop cardiac hypertrophy and dilatation and die between 8 and 30 weeks in heart failure. As the pathology develops, endogenous q/11 rises (2.9-fold in atria; 1.8-fold in ventricles). At 2 weeks, basal PLC activity is increased 9- to 10-fold in atria but not ventricles. By 10 weeks, it is elevated in both, presumably because of the rise in endogenous q/11. We conclude that the pathological changes initiated by early, transient HA*q expression are maintained in part by compensatory changes in signal transduction and other pathways. Cyclosporin A (CsA) prevents hypertrophy caused by activation of calcineurin [Molkentin, J. D., Lu, J.-R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R. & Olson, E. N. (1998) Cell 93, 215228]. Because HA*q acts upstream of calcineurin, we hypothesized that HA*q might initiate additional pathways leading to hypertrophy and dilatation. Treating HA*q mice with CsA diminished some, but not all, aspects of the hypertrophic phenotype, suggesting that multiple pathways are involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiomyopathy (CM) is a primary degenerative disease of myocardium and is traditionally categorized into hypertrophic and dilated CMs (HCM and DCM) according to its gross appearance. Cardiomyopathic hamster (CM hamster), a representative model of human hereditary CM, has HCM and DCM inbred sublines, both of which descend from the same ancestor. Herein we show that both HCM and DCM hamsters share a common defect in a gene for -sarcoglycan (-SG), the functional role of which is yet to be characterized. A breakpoint causing genomic deletion was found to be located at 6.1 kb 5 upstream of the second exon of -SG gene, and its 5 upstream region of more than 27.4 kb, including the authentic first exon of -SG gene, was deleted. This deletion included the major transcription initiation site, resulting in a deficiency of -SG transcripts with the consequent loss of -SG protein in all the CM hamsters, despite the fact that the protein coding region of -SG starting from the second exon was conserved in all the CM hamsters. We elucidated the molecular interaction of dystrophin-associated glycoproteins including -SG, by using an in vitro pull-down study and ligand overlay assay, which indicates the functional role of -SG in stabilizing sarcolemma. The present study not only identifies CM hamster as a valuable animal model for studying the function of -SG in vivo but also provides a genetic target for diagnosis and treatment of human CM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased cardiovascular mortality occurs in diabetic patients with or without coronary artery disease and is attributed to the presence of diabetic cardiomyopathy. One potential mechanism is hyperglycemia that has been reported to activate protein kinase C (PKC), preferentially the isoform, which has been associated with the development of micro- and macrovascular pathologies in diabetes mellitus. To establish that the activation of the PKC isoform can cause cardiac dysfunctions, we have established lines of transgenic mice with the specific overexpression of PKC2 isoform in the myocardium. These mice overexpressed the PKC2 isoform transgene by 2- to 10-fold as measured by mRNA, and proteins exhibited left ventricular hypertrophy, cardiac myocyte necrosis, multifocal fibrosis, and decreased left ventricular performance without vascular lesions. The severity of the phenotypes exhibited gene dose-dependence. Up-regulation of mRNAs for fetal type myosin heavy chain, atrial natriuretic factor, c-fos, transforming growth factor, and collagens was also observed. Moreover, treatment with a PKC-specific inhibitor resulted in functional and histological improvement. These findings have firmly established that the activation of the PKC2 isoform can cause specific cardiac cellular and functional changes leading to cardiomyopathy of diabetic or nondiabetic etiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signaling events controlled by calcineurin promote cardiac hypertrophy, but the degree to which such pathways are required to transduce the effects of various hypertrophic stimuli remains uncertain. In particular, the administration of immunosuppressive drugs that inhibit calcineurin has inconsistent effects in blocking cardiac hypertrophy in various animal models. As an alternative approach to inhibiting calcineurin in the hearts of intact animals, transgenic mice were engineered to overexpress a human cDNA encoding the calcineurin-binding protein, myocyte-enriched calcineurin-interacting protein-1 (hMCIP1) under control of the cardiac-specific, -myosin heavy chain promoter (-MHC). In unstressed mice, forced expression of hMCIP1 resulted in a 510% decline in cardiac mass relative to wild-type littermates, but otherwise produced no apparent structural or functional abnormalities. However, cardiac-specific expression of hMCIP1 inhibited cardiac hypertrophy, reinduction of fetal gene expression, and progression to dilated cardiomyopathy that otherwise result from expression of a constitutively active form of calcineurin. Expression of the hMCIP1 transgene also inhibited hypertrophic responses to -adrenergic receptor stimulation or exercise training. These results demonstrate that levels of hMCIP1 producing no apparent deleterious effects in cells of the normal heart are sufficient to inhibit several forms of cardiac hypertrophy, and suggest an important role for calcineurin signaling in diverse forms of cardiac hypertrophy. The future development of measures to increase expression or activity of MCIP proteins selectively within the heart may have clinical value for prevention of heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor NF-B regulates expression of genes that are involved in inflammation, immune response, viral infection, cell survival, and division. However, the role of NF-B in hypertrophic growth of terminally differentiated cardiomyocytes is unknown. Here we report that NF-B activation is required for hypertrophic growth of cardiomyocytes. In cultured rat primary neonatal ventricular cardiomyocytes, the nuclear translocation of NF-B and its transcriptional activity were stimulated by several hypertrophic agonists, including phenylephrine, endothelin-1, and angiotensin II. The activation of NF-B was inhibited by expression of a supersuppressor IB mutant that is resistant to stimulation-induced degradation and a dominant negative IB kinase (IKK) mutant that can no longer be activated by phosphorylation. Furthermore, treatment with phenylephrine induced IB degradation in an IKK-dependent manner, suggesting that NF-B is a downstream target of the hypertrophic agonists. Importantly, expression of the supersuppressor IB mutant or the dominant negative IKK mutant blocked the hypertrophic agonist-induced expression of the embryonic gene atrial natriuretic factor and enlargement of cardiomyocytes. Conversely, overexpression of NF-B itself induced atrial natriuretic factor expression and cardiomyocyte enlargement. These findings suggest that NF-B plays a critical role in the hypertrophic growth of cardiomyocytes and may serve as a potential target for the intervention of heart disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta-Oxidation of long-chain fatty acids provides the major source of energy in the heart. Defects in enzymes of the beta-oxidation pathway cause sudden, unexplained death in childhood, acute hepatic encephalopathy or liver failure, skeletal myopathy, and cardiomyopathy. Very-long-chain acyl-CoA dehydrogenase [VLCAD; very-long-chain-acyl-CoA:(acceptor) 2,3-oxidoreductase, EC 1.3.99.13] catalyzes the first step in beta-oxidation. We have isolated the human VLCAD cDNA and gene and determined the complete nucleotide sequences. Polymerase chain reaction amplification of VLCAD mRNA and genomic exons defined the molecular defects in two patients with VLCAD deficiency who presented with unexplained cardiac arrest and cardiomyopathy. In one, a homozygous mutation in the consensus dinucleotide of the donor splice site (g+1-->a) was associated with universal skipping of the prior exon (exon 11). The second patient was a compound heterozygote, with a missense mutation, C1837-->T, changing the arginine at residue 613 to tryptophan on one allele and a single base deletion at the intron-exon 6 boundary as the second mutation. This initial delineation of human mutations in VLCAD suggests that VLCAD deficiency reduces myocardial fatty acid beta-oxidation and energy production and is associated with cardiomyopathy and sudden death in childhood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired -adrenergic receptor (AR) function, which includes loss of AR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of AR function is agonist-stimulated receptor phosphorylation by the AR kinase (ARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in AR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of ARK1 or the 2AR were mated into a genetic model of murine heart failure (MLP/). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP/ and MLP//2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP//ARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP//ARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP/ mice but less than controls. Importantly, heightened AR desensitization in the MLP/ mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the ARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal AR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit ARK1 as a novel mode of therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A technique for systematic peptide variation by a combination of rational and evolutionary approaches is presented. The design scheme consists of five consecutive steps: (i) identification of a seed peptide with a desired activity, (ii) generation of variants selected from a physicochemical space around the seed peptide, (iii) synthesis and testing of this biased library, (iv) modeling of a quantitative sequence-activity relationship by an artificial neural network, and (v) de novo design by a computer-based evolutionary search in sequence space using the trained neural network as the fitness function. This strategy was successfully applied to the identification of novel peptides that fully prevent the positive chronotropic effect of anti-1-adrenoreceptor autoantibodies from the serum of patients with dilated cardiomyopathy. The seed peptide, comprising 10 residues, was derived by epitope mapping from an extracellular loop of human 1-adrenoreceptor. A set of 90 peptides was synthesized and tested to provide training data for neural network development. De novo design revealed peptides with desired activities that do not match the seed peptide sequence. These results demonstrate that computer-based evolutionary searches can generate novel peptides with substantial biological activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin D, the major steroid hormone that controls mineral ion homeostasis, exerts its actions through the vitamin D receptor (VDR). The VDR is expressed in many tissues, including several tissues not thought to play a role in mineral metabolism. Studies in kindreds with VDR mutations (vitamin D-dependent rickets type II, VDDR II) have demonstrated hypocalcemia, hyperparathyroidism, rickets, and osteomalacia. Alopecia, which is not a feature of vitamin D deficiency, is seen in some kindreds. We have generated a mouse model of VDDR II by targeted ablation of the second zinc finger of the VDR DNA-binding domain. Despite known expression of the VDR in fetal life, homozygous mice are phenotypically normal at birth and demonstrate normal survival at least until 6 months. They become hypocalcemic at 21 days of age, at which time their parathyroid hormone (PTH) levels begin to rise. Hyperparathyroidism is accompanied by an increase in the size of the parathyroid gland as well as an increase in PTH mRNA levels. Rickets and osteomalacia are seen by day 35; however, as early as day 15, there is an expansion in the zone of hypertrophic chondrocytes in the growth plate. In contrast to animals made vitamin D deficient by dietary means, and like some patients with VDDR II, these mice develop progressive alopecia from the age of 4 weeks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During vertebrate limb development, growth plate chondrocytes undergo temporally and spatially coordinated differentiation that is necessary for proper morphogenesis. Parathyroid hormone-related peptide (PTHrP), its receptor, the PTH/PTHrP receptor, and Indian hedgehog are implicated in the regulation of chondrocyte differentiation, but the specific cellular targets of these molecules and specific cellular interactions involved have not been defined. Here we generated chimeric mice containing both wild-type and PTH/PTHrP receptor (/) cells, and analyzed cellcell interactions in the growth plate in vivo. Abnormal differentiation of mutant cells shows that PTHrP directly signals to the PTH/PTHrP receptor on proliferating chondrocytes to slow their differentiation. The presence of ectopically differentiated mutant chondrocytes activates the Indian hedgehog/PTHrP axis and slows differentiation of wild-type chondrocytes. Moreover, abnormal chondrocyte differentiation affects mineralization of cartilaginous matrix in a non-cell autonomous fashion; matrix mineralization requires a critical mass of adjacent ectopic hypertrophic chondrocytes. Further, ectopic hypertrophic chondrocytes are associated with ectopic bone collars in adjacent perichondrium. Thus, the PTH/PTHrP receptor directly controls the pace and synchrony of chondrocyte differentiation and thereby coordinates development of the growth plate and adjacent bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cellcell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging.